- Multi-class text classification cross-bench@2021 # 0 1 2 - |
Documents | |
---|---|
Classes | |
Vocabulary | |
Commons | |
Json |
MLP#0 from reuters_mlp.py in exemples repository | ||
---|---|---|
Model | Dataset | Score |
print('Building model #0...') model = Sequential() model.add(Dense(512, input_shape=(max_words,))) model.add(Activation('relu')) model.add(Dropout(0.5)) model.add(Dense(num_classes)) model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) history = model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, verbose=1, validation_split=0.1) score = model.evaluate(x_test, y_test, batch_size=batch_size, verbose=1) |
2020-05-07 16:31:37,456 : INFO : HuffPost dataset : [200853] size, [25000] size2, [(18750, 27192)] x_train, [(18750, 28)] y_train, [(6250, 27192)] x_test, [(6250, 28)] y_test, [28] classes, [27192] vocabulary, Building model #0... |
Dataset HuffPost , Model 0 , Test score: 1.3521850590515136 , Test accuracy: 0.6449599862098694 5:HEALTHY LIVING -> 4:CRIME, 25:GOOD NEWS 16:POLITICS -> 12:COMEDY, 4:CRIME 19:WORLD NEWS -> 15:WOMEN, 12:COMEDY 23:ENTERTAINMENT -> 18:TRAVEL, 8:SPORTS 5:HEALTHY LIVING -> 12:COMEDY, 15:WOMEN 39:BUSINESS -> 12:COMEDY, 27:TECH 40:WELLNESS -> 4:CRIME, 13:ARTS & CULTURE 8:SPORTS -> 11:GREEN, 4:CRIME 28:PARENTING -> 0:MONEY, 23:ENTERTAINMENT 15:WOMEN -> 12:COMEDY, 11:GREEN |
MLP#1 from guide#Multilayer Perceptron (MLP) for multi-class softmax classification | ||
print('Building model #1...') model = Sequential() model.add(Dense(64, activation='relu', input_shape=(max_words,))) model.add(Dropout(0.5)) model.add(Dense(64, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(num_classes, activation='softmax')) sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True) model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy']) model.fit(x_train, y_train, epochs=20, batch_size=128) score = model.evaluate(x_test, y_test, batch_size=128) |
2020-05-07 17:26:01,786 : INFO : HuffPost dataset : [200853] size, [25000] size2, [(18750, 27192)] x_train, [(18750, 28)] y_train, [(6250, 27192)] x_test, [(6250, 28)] y_test, [28] classes, [27192] vocabulary, Building model #1... |
Dataset HuffPost , Model 1 , Test score: 2.022144215698242 , Test accuracy: 0.47231999039649963 6:THE WORLDPOST -> 17:LATINO VOICES, 19:STYLE 8:POLITICS -> 5:BLACK VOICES, 19:STYLE 32:WELLNESS -> 17:LATINO VOICES, 19:STYLE 26:WORLD NEWS -> 17:LATINO VOICES, 19:STYLE 32:WELLNESS -> 17:LATINO VOICES, 20:IMPACT 32:WELLNESS -> 5:BLACK VOICES, 19:STYLE 28:QUEER VOICES -> 17:LATINO VOICES, 20:IMPACT 34:TRAVEL -> 17:LATINO VOICES, 19:STYLE 12:HEALTHY LIVING -> 5:BLACK VOICES, 19:STYLE 7:COMEDY -> 17:LATINO VOICES, 20:IMPACT |
Documents | |
---|---|
Classes | |
Vocabulary | |
Commons | |
Json |
MLP#0 from reuters_mlp.py in exemples repository | ||
---|---|---|
print('Building model #0...') model = Sequential() model.add(Dense(512, input_shape=(max_words,))) model.add(Activation('relu')) model.add(Dropout(0.5)) model.add(Dense(num_classes)) model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) history = model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, verbose=1, validation_split=0.1) score = model.evaluate(x_test, y_test, batch_size=batch_size, verbose=1) |
2020-05-07 16:59:08,191 : INFO : 20news dataset : [1764] size, [1774] size2, [(1323, 24730)] x_train, [(1323, 3)] y_train, [(441, 24730)] x_test, [(441, 3)] y_test, [3] classes, [24730] vocabulary, Building model #0... |
Dataset 20news , Model 0 , Test score: 0.0912760134845499 , Test accuracy: 0.9727891087532043 1:rec.sport.baseball -> 1:rec.sport.baseball, 2:sci.space -> 2:sci.space, 0:comp.graphics -> 0:comp.graphics, 1:rec.sport.baseball -> 1:rec.sport.baseball, 0:comp.graphics -> 0:comp.graphics, 2:sci.space -> 2:sci.space, 1:rec.sport.baseball -> 1:rec.sport.baseball, 1:rec.sport.baseball -> 1:rec.sport.baseball, 0:comp.graphics -> 0:comp.graphics, 0:comp.graphics -> 0:comp.graphics, |
MLP#1 from guide#Multilayer Perceptron (MLP) for multi-class softmax classification | ||
print('Building model #1...') model = Sequential() model.add(Dense(64, activation='relu', input_shape=(max_words,))) model.add(Dropout(0.5)) model.add(Dense(64, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(num_classes, activation='softmax')) sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True) model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy']) model.fit(x_train, y_train, epochs=20, batch_size=128) score = model.evaluate(x_test, y_test, batch_size=128) |
2020-05-07 17:20:45,606 : INFO : 20news dataset : [1764] size, [1774] size2, [(1323, 25336)] x_train, [(1323, 3)] y_train, [(441, 25336)] x_test, [(441, 3)] y_test, [3] classes, [25336] vocabulary, Building model #1... |
Dataset 20news , Model 1 , Test score: 1.012091209558673 , Test accuracy: 0.920634925365448 1:rec.sport.baseball -> 1:rec.sport.baseball, 0:comp.graphics -> 0:comp.graphics, 2:sci.space -> 2:sci.space, 2:sci.space -> 0:comp.graphics, 1:rec.sport.baseball -> 1:rec.sport.baseball, 2:sci.space -> 2:sci.space, 0:comp.graphics -> 0:comp.graphics, 0:comp.graphics -> 0:comp.graphics, 0:comp.graphics -> 0:comp.graphics, 2:sci.space -> 2:sci.space, |
Documents | |
---|---|
Classes | |
Vocabulary | |
Commons | |
Json |
MLP#0 from reuters_mlp.py in exemples repository | ||
---|---|---|
print('Building model #0...') model = Sequential() model.add(Dense(512, input_shape=(max_words,))) model.add(Activation('relu')) model.add(Dropout(0.5)) model.add(Dense(num_classes)) model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) history = model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, verbose=1, validation_split=0.1) score = model.evaluate(x_test, y_test, batch_size=batch_size, verbose=1) |
2020-05-07 17:01:57,268 : INFO : reuters dataset : [11218] size, [11228] size2, [(8413, 25900)] x_train, [(8413, 46)] y_train, [(2805, 25900)] x_test, [(2805, 46)] y_test, [46] classes, [25900] vocabulary, Building model #0... |
Dataset reuters , Model 0 , Test score: 0.7079413878513955 , Test accuracy: 0.8363636136054993 3:earn -> 3:earn, 20:interest 3:earn -> 3:earn, 1:grain 3:earn -> 3:earn, 19:money-fx 3:earn -> 3:earn, 4:acq 3:earn -> 3:earn, 20:interest 1:grain -> 1:grain, 28:livestock 4:acq -> 4:acq, 3:earn 39:pet-chem -> 4:acq, 3:earn 16:crude -> 3:earn, 19:money-fx 3:earn -> 3:earn, 20:interest |
MLP#1 from guide#Multilayer Perceptron (MLP) for multi-class softmax classification | ||
print('Building model #1...') model = Sequential() model.add(Dense(64, activation='relu', input_shape=(max_words,))) model.add(Dropout(0.5)) model.add(Dense(64, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(num_classes, activation='softmax')) sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True) model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy']) model.fit(x_train, y_train, epochs=20, batch_size=128) score = model.evaluate(x_test, y_test, batch_size=128) |
2020-05-07 17:10:58,913 : INFO : reuters dataset : [11218] size, [11228] size2, [(8413, 25874)] x_train, [(8413, 46)] y_train, [(2805,5874)] x_test, [(2805, 46)] y_test, [46] classes, [25874] vocabulary, Building model #1... |
Dataset reuters , Model 1 , Test score: 1.5681505824580337 , Test accuracy: 0.6171122789382935 3:earn -> 3:earn, 4:acq 16:crude -> 3:earn, 16:crude 9:coffee -> 19:money-fx, 11:trade 3:earn -> 3:earn, 4:acq 3:earn -> 3:earn, 4:acq 2:veg-oil -> 1:grain, 16:crude 3:earn -> 3:earn, 4:acq 4:acq -> 4:acq, 3:earn 3:earn -> 3:earn, 4:acq 3:earn -> 3:earn, 4:acq |
Documents | |
---|---|
Classes | |
Vocabulary | |
Commons | |
Json | |
TODO |
#30@2020.05-15k |